Improving statistical machine translation with linguistic information

نویسنده

  • Hieu Hoang
چکیده

Statistical machine translation (SMT) should benefit from linguistic information to improve performance but current state-of-the-art models rely purely on data-driven models. There are several reasons why prior efforts to build linguistically annotated models have failed or not even been attempted. Firstly, the practical implementation often requires too much work to be cost effective. Where ad-hoc implementations have been created, they impose too strict constraints to be of general use. Lastly, many linguistically-motivated approaches are language dependent, tackling peculiarities in certain languages that do not apply to other languages. This thesis successfully integrates linguistic information about part-of-speech tags, lemmas and phrase structure to improve MT quality. The major contributions of this thesis are: 1. We enhance the phrase-based model to incorporate linguistic information as additional factors in the word representation. The factored phrase-based model allows us to make use of different types of linguistic information in a systematic way within the predefined framework. We show how this model improves translation by as much as 0.9 BLEU for small German-English training corpora, and 0.2 BLEU for larger corpora. 2. We extend the factored model to the factored template model to focus on improving reordering. We show that by generalising translation with part-of-speech tags, we can improve performance by as much as 1.1 BLEU on a small FrenchEnglish system. 3. Finally, we switch from the phrase-based model to a syntax-based model with the mixed syntax model. This allows us to transition from the word-level approaches using factors to multiword linguistic information such as syntactic labels and shallow tags. The mixed syntax model uses source language syntactic information to inform translation. We show that the model is able to explain translation better, leading to a 0.8 BLEU improvement over the baseline hierarchical phrase-based model for a small German-English task. Also, the model requires only labels on continuous source spans, it is not dependent on a tree structure, therefore, other types of syntactic information can be integrated into the model. We experimented with a shallow parser and see a gain of 0.5 BLEU for the same dataset. Training with more training data, we improve translation by 0.6 BLEU (1.3 BLEU out-of-domain) over the hierarchical baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Usability of Statistical Parsers by Incorporating Linguistic Constraints

Statistical systems with high accuracy are very useful in real-world applications. If these systems can capture basic linguistic information, then the usefulness of these statistical systems improve a lot. This paper is an attempt at incorporating linguistic constraints in statistical dependency parsing. We consider a simple linguistic constraint that a verb should not have multiple subjects/ob...

متن کامل

Use of linguistic features for improving English-Persian SMT

In this paper, we investigate the effects of using linguistic information for improvement of statistical machine translation for English-Persian language pair. We choose POS tags as helping linguistic feature. A monolingual Persian corpus with POS tags is prepared and variety of tags is chosen to be small. Using the POS tagger trained on this corpus, we apply a factored translation model. We al...

متن کامل

Improving the Performance of English-Tamil Statistical Machine Translation System using Source-Side Pre-Processing

Machine Translation is one of the major oldest and the most active research area in Natural Language Processing. Currently, Statistical Machine Translation (SMT) dominates the Machine Translation research. Statistical Machine Translation is an approach to Machine Translation which uses models to learn translation patterns directly from data, and generalize them to translate a new unseen text. T...

متن کامل

Phrase Linguistic Classification and Generalization for Improving Statistical Machine Translation

In this paper a method to incorporate linguistic information regarding single-word and compound verbs is proposed, as a first step towards an SMT model based on linguistically-classified phrases. By substituting these verb structures by the base form of the head verb, we achieve a better statistical word alignment performance, and are able to better estimate the translation model and generalize...

متن کامل

Deepfix: Statistical Post-editing of Statistical Machine Translation Using Deep Syntactic Analysis

Deepfix is a statistical post-editing system for improving the quality of statistical machine translation outputs. It attempts to correct errors in verb-noun valency using deep syntactic analysis and a simple probabilistic model of valency. On the English-to-Czech translation pair, we show that statistical post-editing of statistical machine translation leads to an improvement of the translatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011